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Tunneling rate fluctuations induced by nonlinear resonances: A quantitative treatment
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We investigate the tunneling process between two symmetric stable islands of a forced pendulum Hamil-
tonian in the weak chaos regime. We show that when the tunneling doublet is quantized over a classical
nonlinear resonance the tunneling rate strongly deviates from the semiclassical prediction. This mechanism is
responsible for the irregular dependence of the tunneling rate on the system parameters. The weak-chaos
condition allows us to make a theoretical prediction that agrees very well with the numerical results. This
opens up a possible avenue to a general theory on the dependence of quantum tunneling on classical chaos.
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PACS numbeps): 05.45+b, 03.65.Sq, 73.40.Gk

One of the most attractive aspects of classically chaotispace structure and in particular to the destruction of the
guantum systems is the surprising behavior of the tunnelingegular tori by the nonlinear resonances. This makes it pos-
rate. This is shown to be an erratic function of the systensible for us to derive a quantitative prediction, which turns
parameter§1—4]. This means that the tunneling rate under-out to agree remarkably well with the numerical results. Note
goes fluctuations that enhance, or reduce, its intensity bhat the main difference with the approach adopted by Doron
several orders of magnitude, compared to the smooth an@d Frischa{7] is that these authors study a case of fully
regular behavior corresponding to the traditional conditionsd€veloped chaos, a physical condition that forces them to

A kind of general agreement has been reached by thdepart from the ordinary semiclassical methods. Here, on the

researchers working on this hot issue. This is that the tunnefontrary, we focus on the_ onset of chaqs, a condition making
ing properties must be traced back to the crossing of th easier for us to establish a connection between quantum

: ; : . unneling and classical dynamics.
Lrnelng oLt i N Sl i coreshande 0 "To dress e problem of e comnectonbetween e
. " ing and classical phase-space structure we consider the fol-

be referring to these phenomena as chaos assisted tunneli ing Hamiltonian:
(CAT) processes, since this is the definition generally
adopted in the literature in spite of the fact that the influence
of chaos can also reduce the rate of the tunnel process. It is H= = +v1c092q) +v,cod2q— Q). @
also thought, at the level of merely qualitative arguments,
that the erraticlike behavior of the tunneling rate depends orfhis is a forced system whose dynamical properties are well
the chaotic nature of the third state. It has to be pointed ouknown. Depending on the value of the perturbation strength
that a semiclassical treatment represents a natural way of, the phase space can show either regular or chaotic dy-
establishing a connection between the quantum propertiesamics. Fow,=0 this is nothing but an ordinary, and inte-
tunneling rate in the case under discussion, and the classicgtable, pendulum. Increasing the valuevgfmakes the dy-
phase space. Unfortunately, these methods cannot be applisdmics nonintegrable and eventually chaotic. Figure 1 shows
to the chaotic states in the standard Einstein-Brillouin-Kellerthe effect of setting),=0.005. We can easily identify the
(EBK) form [6], and this is probably the reason why all the isolated resonances of order 1/8, 1/7, and 1/6, resulting from
results reached so far on this interesting issue fail to supplehe destruction of tori with winding numbers rationally con-
ment the qualitative arguments with precise quantitative prenected to the perturbation frequency. Notice also the stochas-
dictions. Recently Doron and Frischft] have addressed tic layer close to the separatrix, where the higher-order reso-
this interesting issue by means of nonordinary semiclassicalances overlap, giving rise to fully developed chaos.
techniques. To study the quantum dynamics of this system, and in

This paper is devoted to describing the discovery that thearticular its tunneling properties, we set periodic conditions
processes observed in the literature so far, the CAT proat the borders of the intervale[0,27]. This has the effect
cesses, are a special case of a more general phenomenohfcreating an enlarged phase space consisting of two iden-
The third state invoked by all the researchers of this fieldical cells. The quantum-mechanical eigenstates must be ei-
need not be chaotic. Here we show that the same qualitativiner symmetric or antisymmetric with respect to a
behavior as that observed fii—3] becomes ostensible also w-translation along they axis, and some eigenstates exist
as an effect of the crossing with regular states. In this casehose linear combination is essentially located in only one
the crossings of states, and thus the fluctuation of the tunnebf the two cells. According t¢8] the time evolution is de-
ing doublets, can be directly related to the classical phasescribed by means of a unitary operator, which evolves the
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of the two eigenstates of the Floquet operator that have the
largest overlap with a minimum-uncertainty state located at
the center of one of the two stable islarjds.

We adopt the following numerical procedure. The Floquet

matrix F is determined by the numerical integration of Eq.
(2) and the eigenvalues and the eigenstates are subsequently
obtained by numerical diagonalization. The results for the
main-doublet splittingAE=AE,, as a function ofv, are
shown in Fig. 2a) for different values of the perturbation
parametev,. We see that accordingly with the semiclassical
prediction[9], in the unperturbed caskeE is a smooth func-
, , , , , , tion of v,. However, wherv, is given an even small but
0 1 2 3 4 5 6 finite value,AE strongly departs from the smooth behavior,

4 with an increase, or decrease, by several orders of magni-

FIG. 1. Stroboscopic plot of the classical dynamics driven bytude. This behavior is similar to that ¢2,3], where the
Hamiltonian (1). The values of the system parameters @re2,  SPlitting irregularity has been related to the crossings of the
v,=0.035,v,=0.005. Some nonlinear resonances of ordarakk tunneling doublet with a third level, which belongs to the
visible: those below the separatrix referrte=6, 7, and 8, and that chaotic region of the corresponding classical system. To con-
above it ton=38. firm the connection of these results with the third-state

theory, we calculate the first energy levéls. In Fig. 2b)
quantum state by one entire period of the external perturbaye show those of them that cross the main doublet in the
tjon. This is called the Floquet operator and it is denoted b)éamevl interval as that of Fig. @). We see clearly that the
F. The generalized eigenstatas(q,t) and eigenvalues, splitting irregularities correspond to the crossing between the
of F are derived from the eigenvalue equation: main doublet and a third state, or more precisely, a second
doublet[5]. The effect of level crossing with a weakly per-
. d turbed Hamiltonian is well established: the spectrum is
( H _'ﬁﬁ) Un(0,1) = eqUn(a, 1), 2 modified only in the vicinity of the crossing that becomes an
avoided level crossing, thereby resulting in significant
where u(q,t) =exp(-igit) ¥, (at) is by construction time changes of the main-qloublet Ievgls,_and thus of the spli'gting
periodic, u,(q,t)=u,(q,t+T), and e, is defined bye, AE. Note that the avoided crossing is too small to be visible

=#¢,. One important feature of the Floquet formalism is in the scale of Fig. @). 9 o .
the Brillouin-zone structure of the spectrum: every eigenstate S this effect a CAT process? Do the states colliding with

us(g,t) results in the wider class of eigenstates and eigent’® main doublet belong to the chaotic region of the phase
values defined, respectively, by space? The answer is incontrovertible: in general they do

not. This is so because, at least for the smallest values of
Un m(0, D) =Up,(q,t)emet (3) used in Fig. 2a), the doublets 5, 6, and 7 belong to the
' regular region. In facb,=0.0001, a value at which the fluc-
and tuations of the tunneling rate are already very strong, means
a perturbation weaker than that used to derive Fig. 1: the
enm=&nthm, (4) corresponding phase space is even more regular, and thus
barely distinguishable from the unperturbed one except pos-
whereme Z. Itis evident that the functions belonging to the sibly for a thin stochastic layer around the separatrix. We
same class represent the same solution taBqTherefore,  think, therefore, that the results of Figap, with the help of
if an eigenstate has a given eigenvakiewhich does not Fig. 1, afford a compelling numerical evidence that the tun-
belong to the first Brillouin region, € e <#(), it is conve-  neling rate can be characterized by strong fluctuations with-
nient to fold it back to this region by means of the prescrip-out necessarily involving the interaction with a strongly cha-
tion (4). To avoid confusion we denote the resulting energiesotic region. The splitting irregularities are shown below to be
with the symbolE. caused by the birth, in the regular phase-space region, of
The eigenstates,, n(q,t) reflect the translational invari- nonlinear resonances, a fact that, surprisingly enough, has
anceq—(q+m and can be labeled as odd or even with re-been overlooked by the literature on this field of research.
spect to this symmetry operation. Thus the energy spectrum Note that further progress on the CAT processes has been
of the Floquet operator appears as a series of douBlets  hampered by a major difficulty: it is not yet known how to
with =+ indicating the translation symmetry. The rate of therealize a proper semiclassical picture of the chaotic states
tunneling process is determined by the energy splittingsnd, consequently, how to evaluate the tunneling matrix el-
AE,=|E, + —E, _|, which, in turn, determine the dynamics ements. The crossings 5, 6, and 7 of Fi¢g)2on the con-
of a generic wave packet initially located in one of the twotrary, are compatible with the semiclassical quantization of
islands. For simplicity here we focus on the energy splittingHamiltonian (1), along the lines established by Breuer and
of the “main doublet,” which represents the natural exten-Holthaus[10] and by Bohiga®t al.[2]. The analysis here is
sion of the fundamental-state doublet of an autonomousestricted to the crossing between the main doublet and the
Hamiltonian to the Floquet picture. This is defined as the sestates lying below the separatrix.
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consideri(n—n’) to be a small expansion parameter. By
usingJ=7#(n+ 1/2), we obtain

— Am
—HQJrO(h), (6)

where o=w(J)=dHy/dJ is the frequency of the unper-
turbed libration as a function of the classical actibnAn
=n'—n andAm= m—m’'. Equation(6) corresponds to the
classical condition for the onset of nonlinear resonances.
This means that, for sufficiently small's, the crossing of
the two unperturbed leves] ., and Eg,‘m, occurs as a quan-
tum reflection of the birth of a nonlinear resonance of order
Am/An in the classical phase space. The latter has the same
energy as the torus determining the semiclassical quantiza-
tion of one of the two crossing levels. On the basis of this
result the level crossing concerning the main doublet (
=0) corresponds to the overlap between the semiclassical
guantization torus of the fundamental state and a nonlinear
resonance of the appropriate order. Notice that, in principle,
: Eq. (6) involves resonances of any order, thereby making a
J J - J J T given level undergo a virtually infinite number of crossings

’ upon change of a system parameter. However, RE]]
shows that the perturbation strength at the crossing is deter-
mined by the order of the corresponding nonlinear reso-
nance, and that the first-order resonancem€& 1) produce
the most intense effects.

The theoretical result of Eq6) implies such a strong
semiclassical condition as to make it difficult to check it
numerically. To bypass this limitation we apply to E®)
the second-order approximation. Thus we obtain

40x10° -

T T T T T T T — Am QO
20 25 30 35 40 45 50x10° w=

-— — +
v, AN [1+(%/2)(dw/dE)AN)]

o2,  (7)

FIG. 2. The origin of the tunneling rate fluctuations for Hamil- — _
tonian (1) with Q=2 and# =0.025.(a) The main doublet splitting where dw/dE can be expressed analytically via
AE as a function of,. The thick full line denotes the unperturbed = mJu/K(K), K(K) is the elliptic function, andk?®=(E
case (,=0). The other curves, from the bottom to the top, refer to +v,)/2v,. Equation (7) looks like Eq. (6) with the fre-
v,=0.0001, 0.001, and 0.008) The levelsE,, as functions ob;.  quency() properly renormalized and thus depending7gn
The full line labeled by & denotes the main doublet. The other as well as on the energy of the colliding level.
levels are indicated by either full or dashed lines according to This theoretical prediction on the quantum crossings is
whether their crossing with the main doublet occurs below or abovegijystrated by Fig. 2c). We note that the fundamental doublet
the separatrix. The full lines are labeled by their quantum numbersanergy is denoted by a single full line because, as in Fig.
The value of the perturbation strengthwvis=0.001. All the energy 2(b), the energy splitting is not visible in this scale. The
splittings, also at the avoided crossings, are not visible on this scal‘?:)rediction stemming from Eq7) must be compared to the
(c) The energy of the fundamental doubl&ill line) and the ener- numerical quantum crossings of Figb® which occur both
gies of the renormalized quantum resonances as solutions ¢7)Eq. above and below the separatrix. Here we see that the accu-
(symbolg. The resonances are of ordem#1/5 (circles, 1/6 racy of the prediction is good and, as expected, becomes
(squares and 1/7(triangles. The vertical arows are guides to the better with resonances of smaller or'der A still bet’ter agree-
eye connecting the theoretical crossings(of to the numerical . df I | fn.f
crossings ofb), and these to the tunneling peaks(a¥. mevr\l/te;sng\),(vpﬁ (\:/ti?e tf:gnr]esarg:r te(; ::/(a)lntigzsire Figéoizand )

. . while keeping in mind their earlier correspondence with Fig.
We proceed as follows. Adopting a perturbative approachz(c). This results in a vivid explanation of the “fluctuations”

\év_e_ repI?(I:eH \lN'th Ho=p /2;:”1(39"5(2.‘)’ and write the con- of the tunneling rate. This is made especially evident by a
ition of level crossing in the Brillouin zone 480] thorough examination moving from smaller to larger values
of the perturbation strength,. We see that ab,=0.0001
Ho(i(n+3))+AQm=Hq(#(n'+3))+2Qm’.  (5)  the deviations from the unperturbed behavior are significant
only in the close vicinity of the level crossings, thus lending
Let us assume: to be so small as to make it possible to support to our perturbative approach. With the increase of
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v,, the peaks broaden and overlap one another and for stitlnneling rate. However, a mere inspection of Fig. 1 leads to
larger values ob, new peaks come forth corresponding to the incontrovertible conclusion that the effect of the regular-
crossings of higher order. regular crossing is expected to remain larger than that of the
The peaks around;=0.025 andv, =0.0275 refer to lev-  regular-chaotic one. This is made compelling by the topol-
els close to the separatrix, which at properly latde are  ogy of the phase space: the overlap with the closer regular
embedded in the chaotic region. The peak at abwut state remains larger than the overlap with the farther chaotic
=0.020 refers to an above-separatrix level. As a consegne.
quence of this, the dynamical classical process behind these \ye note also that the values of the parametgrcorre-

three peaks is compatible with the motion from one to theshonding to the tunneling-rate peaks appear to be indepen-
other potential well. For these reasons one would be tempt€gen of the intensity of the perturbation strength Should

to conclude that the corresponding transition rates are thg,.c independence remain unaffected by the emergence of
largest. We See, on the con'Frary, that the peaks referrlng tofﬁlly developed chaos, the results of this paper would shed
below-separatrix level crossing {>0.030) are more intense light into the physics of the CAT processes. The assessment

than the peaks due to the above-separatrix level CrossINg3t this key property requires further research work and the

We also note that at the highest valuevgfused in Fig. 2a), . .
when the tunneling rate results in the maximum departurc?ldolot'onS of dlffer.en.t parameter values._ At the_present stage
e are forced to limit ourselves to making conjectures. Our

from the unperturbed prediction, the classical phase-spac\cgon.ecture is that the position of the peaks remains un-
structure is still aimost regular, as shown by Fig. 1, WhiChchajn ed even when thg overlap of thepisolated resonances
refers to the same value of,. 9 P

; . o . occurs, and a condition of full chaos develops. This changed
In conclusion, we have identified a process resting on the ~ " .~ . .

. . condition produces the broadening of these peaks, the birth
role of isolated nonlinear resonances rather than that of the

connected chaotic sea. The corresponding tunnelingiriite of higher-order crossings and the resulting merging of all of

-~ ! , them into a single erraticlike structure, without influencing
exhibits fluctuations that can be even more intense than thosfﬁeir original position. Thus we think that even after the
provoked by the crossing with chaot'lc.states. This can b%rossoverto the chaotic regime, significant signs of the peaks
accounted for by using the same heuristic arguments as tho%e

adopted in Refs[2,3]. These authors argue that the intensity riginated by the quasiintegrable nonlinear resonances re-

of the process is proportional to the matrix elem¥nton- main.
necting one of the partners of the tunneling doublet, $tate Before concluding, we want to point out that these results

0 the crossing statc). This crucial parameter is roughly are qualitatively similar to those obtained in Rgf]. These

proportional to the overlap betweda) and |r). We can physical effects, as here shown, can be accounted for very

- . . well, both qualitatively and quantitatively. This means that
predict its value with heuristic arguments based on the ob g y g Y

. R . the theoretical arguments of this paper provide an exhaustive
servation of the Husimi distribution of the eigenstatast account for the “plateau effect” of4]. This is an important

shown herg The ground state is represented by almoséask that has recently challenged the efforts of some groups

Gaussian packets located at the centers of the regular islan See Ref[11]). Should the phenomenon illustrated[#] be
the regular crossing state corresponds to a double ringg—q :

. : roved to be a form of CAT, this would be a strong support
shaped bun surrounding the Gaussian packets, and the ¢ “our conviction that the semiclassical arguments of this

otic state to an 8-shaped distribution lying on the ChafOt'Cpaper are a significant step ahead towards a quantitative pre-
region of Fig. 1. As the value df decreases, the Gaussian diction of CAT processes

state shrinks, the regular distribution collapses on its quanti-
zation torus, and the chaotic state remains localized in the R.R. thanks the CEE for Programme Research Training
chaotic layer. This produces a decrease of the overlap amorf{dMR) Grant No. ERB4001GT952681, while L.B. acknowl-
different states, and consequently an overall decrease of theglges the Italian CNR and NATO for financial support.
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