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Tunneling rate fluctuations induced by nonlinear resonances: A quantitative treatment
based on semiclassical arguments
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We investigate the tunneling process between two symmetric stable islands of a forced pendulum Hamil-
tonian in the weak chaos regime. We show that when the tunneling doublet is quantized over a classical
nonlinear resonance the tunneling rate strongly deviates from the semiclassical prediction. This mechanism is
responsible for the irregular dependence of the tunneling rate on the system parameters. The weak-chaos
condition allows us to make a theoretical prediction that agrees very well with the numerical results. This
opens up a possible avenue to a general theory on the dependence of quantum tunneling on classical chaos.
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PACS number~s!: 05.45.1b, 03.65.Sq, 73.40.Gk
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One of the most attractive aspects of classically cha
quantum systems is the surprising behavior of the tunne
rate. This is shown to be an erratic function of the syst
parameters@1–4#. This means that the tunneling rate unde
goes fluctuations that enhance, or reduce, its intensity
several orders of magnitude, compared to the smooth
regular behavior corresponding to the traditional conditio

A kind of general agreement has been reached by
researchers working on this hot issue. This is that the tun
ing properties must be traced back to the crossing of
tunneling doublet with a third state@5#, which corresponds to
the chaotic region of the classical phase space@2,3#. We shall
be referring to these phenomena as chaos assisted tunn
~CAT! processes, since this is the definition genera
adopted in the literature in spite of the fact that the influen
of chaos can also reduce the rate of the tunnel process.
also thought, at the level of merely qualitative argumen
that the erraticlike behavior of the tunneling rate depends
the chaotic nature of the third state. It has to be pointed
that a semiclassical treatment represents a natural wa
establishing a connection between the quantum proper
tunneling rate in the case under discussion, and the clas
phase space. Unfortunately, these methods cannot be ap
to the chaotic states in the standard Einstein-Brillouin-Ke
~EBK! form @6#, and this is probably the reason why all th
results reached so far on this interesting issue fail to sup
ment the qualitative arguments with precise quantitative p
dictions. Recently Doron and Frischat@7# have addressed
this interesting issue by means of nonordinary semiclass
techniques.

This paper is devoted to describing the discovery that
processes observed in the literature so far, the CAT p
cesses, are a special case of a more general phenom
The third state invoked by all the researchers of this fi
need not be chaotic. Here we show that the same qualita
behavior as that observed in@1–3# becomes ostensible als
as an effect of the crossing with regular states. In this c
the crossings of states, and thus the fluctuation of the tun
ing doublets, can be directly related to the classical pha
PRE 581063-651X/98/58~5!/5689~4!/$15.00
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space structure and in particular to the destruction of
regular tori by the nonlinear resonances. This makes it p
sible for us to derive a quantitative prediction, which tur
out to agree remarkably well with the numerical results. N
that the main difference with the approach adopted by Do
and Frischat@7# is that these authors study a case of fu
developed chaos, a physical condition that forces them
depart from the ordinary semiclassical methods. Here, on
contrary, we focus on the onset of chaos, a condition mak
it easier for us to establish a connection between quan
tunneling and classical dynamics.

To address the problem of the connection between tun
ing and classical phase-space structure we consider the
lowing Hamiltonian:

H5
p2

2
1v1cos~2q!1v2cos~2q2Vt !. ~1!

This is a forced system whose dynamical properties are w
known. Depending on the value of the perturbation stren
v2 , the phase space can show either regular or chaotic
namics. Forv250 this is nothing but an ordinary, and inte
grable, pendulum. Increasing the value ofv2 makes the dy-
namics nonintegrable and eventually chaotic. Figure 1 sh
the effect of settingv250.005. We can easily identify the
isolated resonances of order 1/8, 1/7, and 1/6, resulting f
the destruction of tori with winding numbers rationally co
nected to the perturbation frequency. Notice also the stoc
tic layer close to the separatrix, where the higher-order re
nances overlap, giving rise to fully developed chaos.

To study the quantum dynamics of this system, and
particular its tunneling properties, we set periodic conditio
at the borders of the intervalqP@0,2p#. This has the effect
of creating an enlarged phase space consisting of two id
tical cells. The quantum-mechanical eigenstates must be
ther symmetric or antisymmetric with respect to
p-translation along theq axis, and some eigenstates ex
whose linear combination is essentially located in only o
of the two cells. According to@8# the time evolution is de-
scribed by means of a unitary operator, which evolves
5689 © 1998 The American Physical Society
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5690 PRE 58BONCI, FARUSI, GRIGOLINI, AND RONCAGLIA
quantum state by one entire period of the external pertu
tion. This is called the Floquet operator and it is denoted
F̂. The generalized eigenstatesun(q,t) and eigenvalues«n

of F̂ are derived from the eigenvalue equation:

S H2 i\
]

]t Dun~q,t !5«nun~q,t !, ~2!

where un(q,t)5exp(2ifnt)cfn
(q,t) is by construction time

periodic, un(q,t)5un(q,t1T), and «n is defined by«n
[\fn . One important feature of the Floquet formalism
the Brillouin-zone structure of the spectrum: every eigens
un(q,t) results in the wider class of eigenstates and eig
values defined, respectively, by

un,m~q,t ![un~q,t !eimVt ~3!

and

«n,m[«n1\mV, ~4!

wheremPZ. It is evident that the functions belonging to th
same class represent the same solution to Eq.~2!. Therefore,
if an eigenstate has a given eigenvalue«, which does not
belong to the first Brillouin region, 0<«,\V, it is conve-
nient to fold it back to this region by means of the prescr
tion ~4!. To avoid confusion we denote the resulting energ
with the symbolE.

The eigenstatesun,m(q,t) reflect the translational invari
anceq→q1p and can be labeled as odd or even with
spect to this symmetry operation. Thus the energy spect
of the Floquet operator appears as a series of doubletsEn,6
with 6 indicating the translation symmetry. The rate of t
tunneling process is determined by the energy splitti
DEn5uEn,12En,2u, which, in turn, determine the dynamic
of a generic wave packet initially located in one of the tw
islands. For simplicity here we focus on the energy splitt
of the ‘‘main doublet,’’ which represents the natural exte
sion of the fundamental-state doublet of an autonom
Hamiltonian to the Floquet picture. This is defined as the

FIG. 1. Stroboscopic plot of the classical dynamics driven
Hamiltonian ~1!. The values of the system parameters areV52,
v150.035,v250.005. Some nonlinear resonances of order 1/n are
visible: those below the separatrix refer ton56, 7, and 8, and tha
above it ton58.
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of the two eigenstates of the Floquet operator that have
largest overlap with a minimum-uncertainty state located
the center of one of the two stable islands@4#.

We adopt the following numerical procedure. The Floqu

matrix F̂ is determined by the numerical integration of E
~2! and the eigenvalues and the eigenstates are subsequ
obtained by numerical diagonalization. The results for
main-doublet splittingDE[DE0 , as a function ofv1 are
shown in Fig. 2~a! for different values of the perturbatio
parameterv2 . We see that accordingly with the semiclassic
prediction@9#, in the unperturbed caseDE is a smooth func-
tion of v1 . However, whenv2 is given an even small bu
finite value,DE strongly departs from the smooth behavio
with an increase, or decrease, by several orders of ma
tude. This behavior is similar to that of@2,3#, where the
splitting irregularity has been related to the crossings of
tunneling doublet with a third level, which belongs to th
chaotic region of the corresponding classical system. To c
firm the connection of these results with the third-sta
theory, we calculate the first energy levelsEn . In Fig. 2~b!
we show those of them that cross the main doublet in
samev1 interval as that of Fig. 2~a!. We see clearly that the
splitting irregularities correspond to the crossing between
main doublet and a third state, or more precisely, a sec
doublet@5#. The effect of level crossing with a weakly pe
turbed Hamiltonian is well established: the spectrum
modified only in the vicinity of the crossing that becomes
avoided level crossing, thereby resulting in significa
changes of the main-doublet levels, and thus of the splitt
DE. Note that the avoided crossing is too small to be visi
in the scale of Fig. 2~b!.

Is this effect a CAT process? Do the states colliding w
the main doublet belong to the chaotic region of the ph
space? The answer is incontrovertible: in general they
not. This is so because, at least for the smallest values ov2
used in Fig. 2~a!, the doublets 5, 6, and 7 belong to th
regular region. In factv250.0001, a value at which the fluc
tuations of the tunneling rate are already very strong, me
a perturbation weaker than that used to derive Fig. 1:
corresponding phase space is even more regular, and
barely distinguishable from the unperturbed one except p
sibly for a thin stochastic layer around the separatrix. W
think, therefore, that the results of Fig. 2~a!, with the help of
Fig. 1, afford a compelling numerical evidence that the tu
neling rate can be characterized by strong fluctuations w
out necessarily involving the interaction with a strongly ch
otic region. The splitting irregularities are shown below to
caused by the birth, in the regular phase-space region
nonlinear resonances, a fact that, surprisingly enough,
been overlooked by the literature on this field of research

Note that further progress on the CAT processes has b
hampered by a major difficulty: it is not yet known how
realize a proper semiclassical picture of the chaotic sta
and, consequently, how to evaluate the tunneling matrix
ements. The crossings 5, 6, and 7 of Fig. 2~a!, on the con-
trary, are compatible with the semiclassical quantization
Hamiltonian ~1!, along the lines established by Breuer a
Holthaus@10# and by Bohigaset al. @2#. The analysis here is
restricted to the crossing between the main doublet and
states lying below the separatrix.
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PRE 58 5691TUNNELING RATE FLUCTUATIONS INDUCED BY . . .
We proceed as follows. Adopting a perturbative approa
we replaceH with H05p2/21v1cos(2q), and write the con-
dition of level crossing in the Brillouin zone as@10#

H0„\~n1 1
2 !…1\Vm5H0„\~n81 1

2 !…1\Vm8. ~5!

Let us assume\ to be so small as to make it possible

FIG. 2. The origin of the tunneling rate fluctuations for Ham
tonian~1! with V52 and\50.025.~a! The main doublet splitting
DE as a function ofv1 . The thick full line denotes the unperturbe
case (v250). The other curves, from the bottom to the top, refer
v250.0001, 0.001, and 0.005.~b! The levelsEn as functions ofv1 .
The full line labeled by 06 denotes the main doublet. The oth
levels are indicated by either full or dashed lines according
whether their crossing with the main doublet occurs below or ab
the separatrix. The full lines are labeled by their quantum numb
The value of the perturbation strength isv250.001. All the energy
splittings, also at the avoided crossings, are not visible on this sc
~c! The energy of the fundamental doublet~full line! and the ener-
gies of the renormalized quantum resonances as solutions of Eq~7!
~symbols!. The resonances are of order 1/n51/5 ~circles!, 1/6
~squares!, and 1/7~triangles!. The vertical arrows are guides to th
eye connecting the theoretical crossings of~c! to the numerical
crossings of~b!, and these to the tunneling peaks of~a!.
h,

consider\(n2n8) to be a small expansion parameter. B
usingJ5\(n11/2), we obtain

v̄5
Dm

Dn
V1O~\!, ~6!

where v̄[v̄(J)5]H0 /]J is the frequency of the unper
turbed libration as a function of the classical actionJ, Dn
[n82n andDm[ m2m8. Equation~6! corresponds to the
classical condition for the onset of nonlinear resonanc
This means that, for sufficiently small\ ’s, the crossing of
the two unperturbed levelsEn,m

0 andEn8,m8
0 occurs as a quan

tum reflection of the birth of a nonlinear resonance of ord
Dm/Dn in the classical phase space. The latter has the s
energy as the torus determining the semiclassical quan
tion of one of the two crossing levels. On the basis of t
result the level crossing concerning the main doubletn
50) corresponds to the overlap between the semiclass
quantization torus of the fundamental state and a nonlin
resonance of the appropriate order. Notice that, in princip
Eq. ~6! involves resonances of any order, thereby makin
given level undergo a virtually infinite number of crossin
upon change of a system parameter. However, Ref.@10#
shows that the perturbation strength at the crossing is de
mined by the order of the corresponding nonlinear re
nance, and that the first-order resonances (Dm51) produce
the most intense effects.

The theoretical result of Eq.~6! implies such a strong
semiclassical condition as to make it difficult to check
numerically. To bypass this limitation we apply to Eq.~5!
the second-order approximation. Thus we obtain

v̄5
Dm

Dn

V

@11~\/2!~dv̄/dE!Dn!]
1O~\2!, ~7!

where dv̄/dE can be expressed analytically viav̄
5pAv1/K(k), K(k) is the elliptic function, andk25(E
1v1)/2v1 . Equation ~7! looks like Eq. ~6! with the fre-
quencyV properly renormalized and thus depending on\,
as well as on the energy of the colliding level.

This theoretical prediction on the quantum crossings
illustrated by Fig. 2~c!. We note that the fundamental doubl
energy is denoted by a single full line because, as in F
2~b!, the energy splitting is not visible in this scale. Th
prediction stemming from Eq.~7! must be compared to th
numerical quantum crossings of Fig. 2~b!, which occur both
above and below the separatrix. Here we see that the a
racy of the prediction is good and, as expected, beco
better with resonances of smaller order. A still better agr
ment is expected from smaller values of\.

We now invite the reader to compare Figs. 2~b! and 2~a!,
while keeping in mind their earlier correspondence with F
2~c!. This results in a vivid explanation of the ‘‘fluctuations
of the tunneling rate. This is made especially evident b
thorough examination moving from smaller to larger valu
of the perturbation strengthv2 . We see that atv250.0001
the deviations from the unperturbed behavior are signific
only in the close vicinity of the level crossings, thus lendi
support to our perturbative approach. With the increase
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5692 PRE 58BONCI, FARUSI, GRIGOLINI, AND RONCAGLIA
v2 , the peaks broaden and overlap one another and for
larger values ofv2 new peaks come forth corresponding
crossings of higher order.

The peaks aroundv150.025 andv150.0275 refer to lev-
els close to the separatrix, which at properly largev ’s are
embedded in the chaotic region. The peak at aboutv1
50.020 refers to an above-separatrix level. As a con
quence of this, the dynamical classical process behind th
three peaks is compatible with the motion from one to
other potential well. For these reasons one would be tem
to conclude that the corresponding transition rates are
largest. We see, on the contrary, that the peaks referring
below-separatrix level crossing (v2.0.030) are more intens
than the peaks due to the above-separatrix level cross
We also note that at the highest value ofv2 used in Fig. 2~a!,
when the tunneling rate results in the maximum depart
from the unperturbed prediction, the classical phase-sp
structure is still almost regular, as shown by Fig. 1, wh
refers to the same value ofv2 .

In conclusion, we have identified a process resting on
role of isolated nonlinear resonances rather than that of
connected chaotic sea. The corresponding tunneling rateDE
exhibits fluctuations that can be even more intense than th
provoked by the crossing with chaotic states. This can
accounted for by using the same heuristic arguments as t
adopted in Refs.@2,3#. These authors argue that the intens
of the process is proportional to the matrix elementV con-
necting one of the partners of the tunneling doublet, stateur &,
to the crossing stateuc&. This crucial parameter is roughl
proportional to the overlap betweenuc& and ur &. We can
predict its value with heuristic arguments based on the
servation of the Husimi distribution of the eigenstates~not
shown here!. The ground state is represented by alm
Gaussian packets located at the centers of the regular isla
the regular crossing state corresponds to a double r
shaped bun surrounding the Gaussian packets, and the
otic state to an 8-shaped distribution lying on the chao
region of Fig. 1. As the value of\ decreases, the Gaussia
state shrinks, the regular distribution collapses on its qua
zation torus, and the chaotic state remains localized in
chaotic layer. This produces a decrease of the overlap am
different states, and consequently an overall decrease o
P
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tunneling rate. However, a mere inspection of Fig. 1 leads
the incontrovertible conclusion that the effect of the regul
regular crossing is expected to remain larger than that of
regular-chaotic one. This is made compelling by the top
ogy of the phase space: the overlap with the closer reg
state remains larger than the overlap with the farther cha
one.

We note also that the values of the parameterv1 corre-
sponding to the tunneling-rate peaks appear to be inde
dent of the intensity of the perturbation strengthv2 . Should
this independence remain unaffected by the emergenc
fully developed chaos, the results of this paper would sh
light into the physics of the CAT processes. The assessm
of this key property requires further research work and
adoptions of different parameter values. At the present st
we are forced to limit ourselves to making conjectures. O
conjecture is that the position of the peaks remains
changed even when the overlap of the isolated resona
occurs, and a condition of full chaos develops. This chan
condition produces the broadening of these peaks, the b
of higher-order crossings and the resulting merging of all
them into a single erraticlike structure, without influencin
their original position. Thus we think that even after th
crossover to the chaotic regime, significant signs of the pe
originated by the quasiintegrable nonlinear resonances
main.

Before concluding, we want to point out that these resu
are qualitatively similar to those obtained in Ref.@4#. These
physical effects, as here shown, can be accounted for
well, both qualitatively and quantitatively. This means th
the theoretical arguments of this paper provide an exhaus
account for the ‘‘plateau effect’’ of@4#. This is an important
task that has recently challenged the efforts of some gro
~see Ref.@11#!. Should the phenomenon illustrated in@4# be
proved to be a form of CAT, this would be a strong supp
of our conviction that the semiclassical arguments of t
paper are a significant step ahead towards a quantitative
diction of CAT processes.
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